Abstract: In this article, we successfully prepared three-dimensional cellulose microspheres modified by molecularly imprinted polymer for paclitaxel recognition and separation (3D-CM &PTX&MIPs). The material was characterized by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscope (SEM), Thermogravimetric Analysis (TG) and diffraction of X-rays (XRD). Under the optimized adsorption conditions, the maximum adsorption capacity reached 65.7 mg/g. And after 5 runs of reuse, (3D-CM&PTX&MIPs) still maintained a reusability rate of 90%. Besides, (3D-CM&PTX&MIPs) showed excellent selectivity for target PTX. Finally, (3D-CM&PTX&MIPs) was used for PTX recognition and separation in the extracts of yew leaves. This research laid a good foundation and scientific basis for the efficient, environmentally friendly, and rapid enrichment of metabolites in plants using bio-based molecularly imprinted polymers
Template and target information: paclitaxel, PTX
Author keywords: molecularly imprinted polymer, Three-dimensional cellulose microspheres, selective recognition, Paclitaxel, Taxus x media Rehde