Abstract: An electrochemical aptamer-based method is described for highly specific sensing of urea. Urea-imprinted polydopamine was obtained by electropolymerization of dopamine (DA). The molecularly imprinted polymer (MIP) also contains DNA aptamers on gold nanoparticles decorated with a carbon nanotube network (AuNP/CNT). The material was placed on a glassy carbon electrode (GCE). After removal of urea from the MIP cavities, the GCE display double recognition capability which makes it superior to conventional MIP-only or aptamer-only based assays. On exposure of the modified electrode to urea, the interfacial charge transfer of the redox probe hexacyanoferrate is traced, typically measured at a peak voltage of 0.22 V vs. Ag/AgCl. The change in charge transfer resistance depends on the urea concentration. The assay has a 900 fM detection limit, and response is the linear up to 500 nM urea concentrations
Template and target information: urea
Author keywords: Dual recognition element, Molecularly imprinted polydopamine, urea, Nanohybrid receptor