Abstract: A novel imprinted biocomposite and its non-imprinted form were developed by melaminating and crosslinking of chitosan coated onto a bio-based activated carbon and characterized using FTIR, BET, FESEM-EDS and XRD. Nickel, 4-Toluenesulfonyl chloride, and glutaraldehyde were used as a template, converter of hydroxyl and amine groups to good leaving groups, and cross-linker, respectively. The factors affecting adsorptivity and imprinting factor were optimized by using the Taguchi method for the subsequent comparative adsorptivity, kinetics, isotherms, selectivity, and reusability studies of imprinted biocomposite with its non-imprinted one. The pseudo-first-order and Langmuir models were best fitted to the experimental kinetics and equilibrium isotherm data, respectively. The maximum Ni (II)) adsorptivity of 109.86 mg/g, the imprinting factor (IF) of 5.45 and Ni (II) selectivity coefficients values of 3.13, 4.48, 3.72, 2.51 for Ni (II) toward Zn (II), Cd (II), Cu (II) and Pb (II), respectively, were obtained at optimum conditions. After five consecutive adsorption-desorption cycles, the biocomposites still presented a high adsorptivity (>83%), indicating their excellent reusability
Template and target information: nickel ion, Ni(II)
Author keywords: Ni (II)-imprinted chitosan-based biocomposite, Taguchi method, selectivity