Abstract: In this study, a novel and green synthesis of a new hydrophilic molecularly imprinted 3-aminophenol-hexamethylenetetramine (MIAPH) resin for the selective recognition and separation of plant hormones was developed. The MIAPH resin was obtained using 3-aminophenol as multifunctional monomer which introduced hydroxyl, amino, and imino groups simultaneously, and adenine was used as a dummy template for molecular imprinting. Meanwhile, hexamethylenetetramine released formaldehyde slowly through hydrolysis which was used as the cross-linking agent to avoid the direct and excessive use of toxic formaldehyde. The entire procedure was performed under mild conditions, and was facile, environmentally friendly and energy-efficient. The obtained MIAPH resin showed high specific recognition toward plant hormones and higher recoveries in bean sprouts compared to NIAPH, HLB, and C18. Various parameters affecting the extraction efficiency were optimized, and the calibration linearity of the MIAPH-SPE-HPLC method was determined from 0.07 to 2.86 mg kg-1 with a correlation coefficient (r) ≥ 0.9994 under the optimal conditions. Recoveries of spiked standards ranged from 90.2 to 99.1% for bean sprout with a relative standard deviation of ≥ 5.3%. Finally, the established MIAPH-SPE-HPLC method was successfully applied for the selective extraction and sensitive detection of plant hormones in a variety of complex vegetable matrices
Template and target information: plant hormones, adenine, dummy template
Author keywords: Hydrophilic molecularly imprinted resin, Special aqueous recognition, Green chemistry, Plant hormones, solid phase extraction