Abstract: In this work, a novel thermosensitive surface protein imprinted polymer monolithic column (TsIPMC) was synthesized by combining high internal phase emulsion with 1,1-diphenylethene (DPE) controlled polymerization. Innovatively, DPE and acrylic acid (AA) monomers were introduced in high internal oil and water phases respectively. The research showed that DPE could not only initiate the polymerization of monomers, but also improve the pore performance of monolithic columns. The elution efficiency of template or target protein could be significantly improved by the thermoresponse characteristics of TsIPMC. The effects of DPE and AA on adsorption capacity and imprinting factor (IF) were studied. The optimization results presented that the optimal addition amounts were 55 mg and 50 mg. Under such conditions, the IF of as-prepared TsIPMC was 1.61 and the saturated adsorption capacity was 66 mg/mL. The influences of the flow rate and target protein concentration on the adsorption equilibrium time and effluent volume were revealed. TsIPMC showed higher selectivity for different competing proteins. The reuse stability result showed that the adsorption of TsIPMC to BSA decreased by 3.69% after 12 times of reuse, and the IF remained basically unchanged. TsIPMC would demonstrate the potential applications in the field of protein purification and separation
Template and target information: protein, bovine serum albumin, BSA
Author keywords: protein imprinting, thermosensitive, Polymer monolithic column, Surface imprinted polymer, Specific adsorption