Abstract: As a kind of artificial recognition material, molecularly imprinted polymers (MIPs) offer a promising perspective to be developed as synthetic chemical binders capable of selectively recognize biomacromolecules. However, owing to the large size and conformational flexibility of proteins and peptides, imprinting of these biomacromolecules remains a challenge. Novel imprinting strategies still need exploration for the improvement of recognition performance of MIPs. Herein, we developed a hydrazone bond-oriented surface imprinting strategy for an endogenous peptide hormone, human atrial natriuretic peptide (ANP). Surface-oriented imprinting of peptide via reversible covalent bond anchoring approach increased the orientation homogeneity of imprinted cavities as well as the utility of templates. The prepared nanoparticles exhibited high selectivity and fast recognition kinetics for ANP epitope. The dissociation constant between ANP epitope and MIP was measured as 5.3 μM. The applicability of the material in real samples was verified by the selective magnetic extraction of ANP from human plasma samples. This hydrazone bond-oriented surface imprinting strategy provides an alternative approach for the separation of peptides or proteins in complex bio-samples
Template and target information: peptide, epitope, human atrial natriuretic peptide, ANP
Author keywords: Molecularly imprinted nanoparticles, Hydrazone bond, oriented surface imprinting, atrial natriuretic peptide, superparamagnetism, human plasma