Abstract: In this research, the advantages of molecularly imprinted polymer (MIP) materials have been used to develop a new electrochemical sensor for determination of quetiapine (QTP) drug. MIP nanoparticles were synthesized by precipitation polymerization method and used as QTP recognition elements in the composition of modified carbon paste electrode (CPE) for selective and sensitive assay of this drug. Cyclic voltammetry (CV) and square wave voltammetry (SWV) techniques were used for electrochemical analysis. Some parameters affecting the sensor performance were optimized and under optimal conditions, the proposed sensor showed linear responses with QTP concentration in the range of 1.6 × 10-8 to 2.5 × 10-6 M (R2 = 0.9964). The limits of detection (LOD) and quantification (LOQ) were calculated 5.04 × 10-9 M and 1.68 × 10-8 M respectively. Also, the amounts of %RSD for evaluation of repeatability and reproducibility of the proposed sensors were respectively obtained 2.19 and 3.02%. The method was successfully applied to determination of QTP in its pharmaceutical formulation and human urine samples
Template and target information: quetiapine, QTP
Author keywords: molecularly imprinted polymer, Electrochemical sensor, nanoparticles, Antipsychotic, Quetiapine