MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   
Custom Search
Reference type: Journal
Authors: Amatatongchai M, Sitanurak J, Sroysee W, Sodanat S, Chairam S, Jarujamrus P, Nacapricha D, Lieberzeit PA
Article Title: Highly sensitive and selective electrochemical paper-based device using a graphite screen-printed electrode modified with molecularly imprinted polymers coated Fe3O4@Au@SiO2 for serotonin determination.
Publication date: 2019
Journal: Analytica Chimica Acta
Volume: 1077
Page numbers: 255-265.
DOI: 10.1016/j.aca.2019.05.047
Alternative URL: https://www.sciencedirect.com/science/article/pii/S0003267019306440

Abstract: Herein, we propose a highly sensitive and selective three-dimensional electrochemical paper-based analytical device (3D-ePAD) to determine serotonin (Ser). It uses a graphite-paste electrode modified with nanoparticles coated with molecularly imprinted polymer (MIP). Fe3O4@Au nanoparticles were encapsulated with silica to create novel nano-sized MIP. Morphology and structural characterization reveal that silica imprinted sites (Fe3O4@Au@SiO2) synthesized via sol-gel methods provide excellent features for Ser detection, including high porosity, and greatly improve analyte diffusion and adsorption to provide a faster response by the MIP sensor. The template molecule was effectively removed by solvent extraction to provide a greater number of specific cavities that enhance analyte capacity and sensitivity. The 3D-ePAD was fabricated by alkyl ketene dimer (AKD)-inkjet printing of a circular hydrophobic detection zone on filter paper for application of aqueous samples, coupled with screen-printed electrodes on the paper, which was folded underneath the hydrophobic zone. The sensor was constructed by drop coating of Fe3O4@Au@SiO2-MIP nanocomposites on the graphite electrode (GPE) surface. The MIP sensor (Fe3O4@Au@SiO2-MIP/GPE) was used in the detection of Ser by linear-sweep voltammetry (LSV) in 0.1 M phosphate buffer at pH 8.0. The device exhibits high sensitivity toward Ser, which we attribute to synergistic effects between catalytic properties, electrical conductivity of Fe3O4@Au@SiO2, and significantly increased numbers of imprinted sites. Ser oxidation was observed at +0.39 V. Anodic peak currents for Ser show linearity from 0.01 to 1000 μM (y = 0.0075 ± 0.0049 x + 0.4071 ± 0.0052, r2 = 0.993), with a detection limit of 0.002 μM (3S/N). The device provides good repeatability (%relative standard deviations; RSD) = 4.23%, calculated from the current responses of ten different MIP sensors). The device also exhibits high selectivity and reproducibility (%RSD = 8.35%, obtained from five calibration plots). The analytical performance of the device is suitable for the determination of Ser in pharmaceutical capsules and urine samples
Template and target information: serotonin, Ser
Author keywords: Serotonin, molecularly imprinted polymer (MIP), Three-dimensional electrochemical paper-based analytical device (3D-ePAD), Gold-coated magnetite (Fe3O4@Au), Graphite screen-printed electrode


  SMI keyring blue  Mug featuring the name Peter spelled out in the single letter amino acid code  Lab Chick script shirt






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner