Abstract: A molecularly imprinted polymer (MIP) with magnetic carbon nanotubes (MCNTs) as carrier was synthesized and used for the enrichment and determination of ferulic acid (FA) by high-performance liquid chromatography (HPLC). The morphology and structure of the FA magnetic carbon nanotubes-molecularly imprinted polymers (MCNTs@FA-MIPs) were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results demonstrated that the prepared MCNTs@FA-MIPs had excellent magnetic properties and uniform appearance. The adsorption properties of the novel MIP were studied by kinetic, and isothermal adsorption experiments. The results showed that the MCNTs@FA-MIPs exhibited relatively good uptake kinetics (equilibrium time, 2 h), high adsorption capacity (50 mg g-1), fast separation, and good selectivity for the template molecule with a separation factor α of 1.73. The MCNTs@FA-MIPs combined with HPLC were successfully applied to the separation, enrichment, and determination of FA in a Ligusticum chuanxiong extract and in plasma of rats which had been administered with Taitai beauty essence. The recoveries for FA were 95.53-100.03 % with relative standard deviations (RSDs) less than 5.5%. The results confirmed that the proposed MCNTs@FA-MIPs offered efficient extraction of FA from traditional Chinese medicinal preparations and blood samples and with high specificity
Template and target information: ferulic acid, FA
Author keywords: Magnetic solid phase extraction, HPLC, molecularly imprinted polymer, ferulic acid