Abstract: Monodisperse restricted-access media bi-functional monomers with molecularly imprinted polymers (RAM-MIPs) were constructed using surface-initiated atom transfer radical polymerization. They were used as solid-phase extraction (SPE) adsorbents to enrich sarafloxacin (SAR) residues from egg samples, and influences on their performance were investigated. Optimum synthesis of RAM-MIPs was achieved by combining a bi-functional monomer (4-vinylpyridine-co-methacrylic acid, 1:3) with an 8:1:32:8 ratio of a template molecule, cross-linker, and restricted-access functional monomer. The SAR imprinting factor of RAM-MIPs was 6.05 and the selectivity coefficient between SAR and other fluoroquinolones was 1.86-2.64. Compared with traditional MIPs, the RAM-MIPs showed better SAR enrichment and selectivity during extraction of a complex protein-containing solution. Empty SPE cartridges were filled with RAM-MIP microspheres as SPE adsorbents. The limit of quantitation for SAR was 4.23 ng g-1 (signal-to-noise ratio = 10) and the mean SAR recovery from spiked egg samples was 94.0-101.3%. Intra-day and inter-day relative standard deviations were 1.1-9% and 1.5-3.3%, respectively
Template and target information: sarafloxacin, SAR
Author keywords: Monodisperse restricted access media molecularly imprinted polymers, Bi-functional monomer, sarafloxacin, Solid-phase extraction