MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   
Custom Search
Reference type: Journal
Authors: Jesadabundit W, Jampasa S, Patarakul K, Siangproh W, Chailapakul O
Article Title: Enzyme-free impedimetric biosensor-based molecularly imprinted polymer for selective determination of L-hydroxyproline.
Publication date: 2021
Journal: Biosensors and Bioelectronics
Volume: 191
Article Number: 113387.
DOI: 10.1016/j.bios.2021.113387
Alternative URL: https://www.sciencedirect.com/science/article/pii/S0956566321004243

Abstract: This study first reported enzyme-free impedimetric biosensor-based molecularly imprinted polymers for selective and sensitive determination of L-hydroxyproline (L-hyp), a biomarker for the early diagnosis of bone diseases. In recent study, utilizing a single 3-aminophenylboronic acid (3-APBA) to create imprinted surfaces could result in a strong interaction and difficulty in removal of a template molecule. Hence, a mixture of monomer solution containing 3-APBA and o-phenylenediamine (OPD) in the presence of the L-hyp molecule was co-electropolymerized onto the screen-printed electrode using cyclic voltammetry (CV) to eradicate this mentioned limitation. The detection principle of this sensor is relied on alteration of mediator's charge transfer resistance (Rct) that could be obstructed by L-hyp occupied in imprinted surface. The successfully fabricated biosensor was explored by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and confocal scanning microscopy. Furthermore, the effect of polymer composition on the Rct response was systematically investigated. The result exhibited that the mixture of monomers could provide the highest change of Rct due to high selectivity from esterification of 3-APBA and from hydrogen bond of OPD surrounding the template. The sensor showed a significant increase in Rct in the presence of L-hyp, whereas no observable resistance change was detected in the absence thereof. The calibration curve was obtained in the range from 0.4 to 25 μg mL-1 with limits of detection (3SDblank/Slope) and quantification (10SDblank/Slope) of 0.13 and 0.42 μg mL-1, respectively. This biosensor exhibited high selectivity and sensitivity and was successfully applied to determine L-hyp in human serum samples with satisfactory results
Template and target information: L-hydroxyproline, L-hyp
Author keywords: L-Hydroxyproline, molecularly imprinted polymer, electrochemical impedance spectroscopy, Non-enzymatic sensor, Bone diseases


  Plutonium periodic table mug  Scientist peptide mug  I shop perodically customisable tote bag






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner