Abstract: Glucose oxidase (GOx), traditionally regarded as an oxidoreductase with high β-D-glucose specificity, has been widely applied as sensing probe for β-D-glucose detection. However, it is found that the specificity of GOx is not absolute and GOx cannot decern β-D-glucose among its isomers such as xylose, mannose and galactose. The existence of the other monosaccharides in sensing system could compromise the sensitivity for β-D-glucose, therefore, it is of great urgency to achieve the highly specific catalytic performance of GOx. Herein, porous metal-organic frameworks (MOF) are prepared as the host matrix for immobilization of both GOx and bovine hemoglobin (BHb), obtained a cascaded catalytic system (MOF@GOx@BHb) with both enhanced GOx activity and peroxidase-like activity owing to the spatially confined effect. Then, using β-D-glucose as both template molecules and substances, hydroxyl radicals are produced continuously and applied for initiating the polymerization of molecular imprinting polymers (MIPs) on the surface of MOF@GOx@BHb. Impressively, the obtaining molecularly imprinted GOx (noted as MOF@GOx@BHb-MIPs) achieves the highly sensitive and specific detection of β-D-glucose in the concentration range of 0.5-20 μM with the LOD = 0.4 μM (S/N = 3) by colorimetry. Similarly, MOF@GOx@BHb-MIPs are subsequently obtained using mannose, xylose and galactose as template molecules, respectively, and also show satisfied specific catalytic activity towards corresponding templates, indicating the effectiveness of the proposed strategy to achieve highly specific catalytic performance of GOx
Template and target information: β-D-glucose, glucose
Author keywords: nanoreactor, Spatially confined effect, Cascaded catalytic system, molecular imprinting technology, Monosaccharide detection