Abstract: Conventional methods for the detection of the sulfur mustard poisoning metabolic marker, thiodiglycol (TDG), require expensive instruments and reagents as well as professional operators. To address these problems, a novel test strip based on a molecularly imprinted sensitive membrane (MIM) was developed in this work for point-of-care (POC) detection of TDG. The TDG test strip was prepared conveniently by coating molecular imprinted polymers (MIPs) on a nitrocellulose membrane. When the sample contained TDG, the MIPs could specifically bind with TDG. A great number of AuNPs (AuNPs) could then be adsorbed on the test strip via the formation of an Au-S bond between TDG and AuNPs, giving the test strip the obvious red color of AuNPs. In the absence of TDG, the test strip exhibited much lighter color because it could not adsorb AuNPs. By monitoring the color change of the test strip, TDG could be detected from 1.0 ng/mL to 100.0 μg/mL with a detection limit of 0.23 ng/mL (3σ) under the optimal conditions (the molar ratio of TDG to MAA was 1:2; the eluent was chloroform; the elution time was 50 min; the reaction time between MIPs and TDG was 15 min; the adsorption time of AuNPs was 40 min; the temperature of the reaction system was 35 ℃ ). This method has excellent selectivity and has been used to detect TDG in urine, showing great potential for POC detection of TDG in clinical samples
Template and target information: thiodiglycol, TDG, sulfur mustard
Author keywords: Molecular imprinted sensitive membrane, Test strip, Sulfur mustard, Thiodiglycol, urine