Abstract: The specific identification and detection of a virus are the critical factors to identify and control an epidemic situation. In this study, a novel photonic-magnetic responsive virus-molecularly imprinted photochemical sensor was constructed for recognition of enterovirus 71. As designed, the double-bond-modified magnetic metal organic framework and 4-(4'-acryloyloxyazo) benzoic acid were used as a magnetic carrier and light-responsive functional monomer, respectively. The structure of the recognition site of the virus-molecularly imprinted nanospheres can be photo-switched between two different structures to achieve rapid release and specific binding to the target virus. Additionally, the introduction of a magnetic core enables a rapid separation and recycling of imprinted particles. The device achieves a performance with high-specificity recognition (imprinting factor = 5.1) and an ultrahigh sensitivity with a detection limit of 9.5 × 10-3 U/mL (3.9 fM). Moreover, it has good reproducibility and can be stored for as long as 6 months. Thus, the approach used in this work opens a new avenue for the construction of multiresponsive virus sensors
Template and target information: virus, enterovirus 71
Author keywords: light regulation, virus sensor, photonic-magnetic responsive, double response imprinted polymer, photochemical sensor, ultrahigh sensitivity