Abstract: In contrast to most of essential and heavy metals, mercury levels in seaweed are very low, and pre-concentration methods are required for an adequate total mercury determination and mercury speciation in this foodstuff. An ionic imprinted polymer-based solid phase extraction (on column) pre-concentration procedure has been optimized for mercury species enrichment before liquid chromatography hyphenated with inductively coupled plasma mass spectrometry determination. The polymer has been synthesized by the precipitation polymerization method and using a ternary pre-polymerization mixture containing the template (methylmercury), a non-vinylated monomer (phenobarbital), and a vinylated monomer (methacrylic acid). Factors affecting the adsorption/desorption of Hg species (extract pH, loading and elution flow rates, volume of eluent, etc.), and parameters such as breakthrough volume and reusability, were fully studied. Mercury species were first isolated from seaweed by ultrasound assisted extraction using a 0.1% (v/v) HCl, 0.12% (w/v) l-cysteine, 0.1% (v/v) mercaptoethanol solution. Under optimized conditions, the limits of detection were 0.007 and 0.02 μg kg-1 dw for methylmercury and Hg(II), respectively. The pre-concentration factor (volume of 10 mL of seaweed extract) was 50. Repeatability and reproducibility of the method were satisfactory with relative standard deviations lower than 16%. The proposed methodology was finally applied for the selective pre-concentration and determination of methylmercury and Hg (II) in a BCR-463 certified reference material and in several edible seaweeds
Template and target information: mercury, methylmercury, mercury ion, Hg(II)
Author keywords: ionic imprinted polymer, Solid-phase extraction, Mercury speciation, Edible seaweed