Abstract: A novel fluorescent probe based on molecularly imprinted polymers (MIPs) coupled with carbon quantum dots (CQDs) was fabricated and successfully used for selective recognition of mesotrione. In this probe, the biomass-derived CQDs were prepared through a hydrothermal method using mango peels as carbon source, and the whole synthesis procedure was green without chemical reagents. The CQDs were encapsulated into MIPs by using sol-gel technology. After removal of the template molecule mesotrione, specific binding sites are formed and there is electrostatic attraction between the probe and the template molecule. The synthetic CQDs@MIPs were able to selectively capture the target mesotrione with fluorescence quenching via the specific interaction between mesotrione and the recognition cavities. The probe was used for determination of mesotrione in corn to verify the practicality of the proposed method. The detection limit of mesotrione was 4.7 nmol L-1, and the linear range was 15 nmol L-1 to 3000 nmol L-1. Meanwhile, the recoveries of this method for mesotrione were 91.4-96.2%, and the relative standard deviations (RSDs) were 3.2-6.1%. This work provides a novel research method to synthesize CQDs@MIPs with high selectivity (imprinting factor = 5.6), and which can be used for convenient, rapid recognition and sensitive detection of trace compounds from complex matrices
Template and target information: mesotrione
Author keywords: Carbon quantum dots, molecularly imprinted polymer, Fluorescence quenching mechanism, Mesotrione