Abstract: The "gate effect" mechanism for conductive molecularly imprinted polymer (MIP) film coated electrodes was investigated in detail. It was demonstrated that the decrease of the DPV signal for the Fe(CN)64-/Fe(CN)63- redox probe with the increase of the p-synephrine target analyte concentration in solution at the polythiophene MIP-film coated electrode did not originate from swelling or shrinking of the MIP film, as it was previously postulated, but from changes in the electrochemical process kinetics. The MIP-film coated electrode was examined with cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and surface plasmon resonance (SPR). The MIP-film thickness in the absence and in the presence of the p-synephrine analyte was examined with in situ AFM imaging. Moreover, it was demonstrated that doping of the MIP film was not affected by p-synephrine binding in MIP-film molecular cavities. It was concluded that the "gate effect" was most likely caused by changes in radical cation (polaron) mobility in the film
Template and target information: p-synephrine