Abstract: A molecularly imprinted electrochemical sensor for the detection of serum amyloid A (MAA) in milk was established for early diagnosis of subclinical mastitis in dairy cows. The electrochemical sensor was initially constructed using a nanocomposite material (reduced graphene oxide/gold nanoparticles, AuNPs@rGO) to modify the working electrode. The template protein, MAA, was then immobilized using pyrrole as the functional monomer to carry out the electropolymerization. Finally, the template protein was removed to form a molecular imprint film with the capability to qualitatively and quantitatively signaling of MAA. Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and scanning electron microscopy (SEM) were used to characterize the modification process of the molecularly imprinted electrochemical sensors. Under optimized conditions, the sensor shows two well-behaved linear relationships in the MAA concentration range 0.01 to 200 ng/mL. A lower detection limit was estimated to be 5 pg/mL (S/N = 3). Other parameters including the selectivity, reproducibility (RSD 3.2%), and recovery rate (96.1-103%) are all satisfactory. Compared with the traditional methods, detection of MAA to determine the subclinical mastitis of dairy cows can efficiently be diagnosed and hence prevent an outbreak of dairy cow mastitis. The electrochemical sensor can detect MAA more rapidly, sensitively, and inexpensively than the ELISA-based MAA detection. These advantages indicate that the method is promising for early diagnosis of dairy cows
Template and target information: protein, serum amyloid A, MAA
Author keywords: Subclinical mastitis, Milk amyloid A, Electrochemical sensor, molecular imprinting, Nanocomposite