MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   
Custom Search
Reference type: Journal
Authors: Yao JM, Zhang LX, Ran JF, Wang SS, Dong N
Article Title: Specific recognition of cationic paraquat in environmental water and vegetable samples by molecularly imprinted stir-bar sorptive extraction based on monohydroxylcucurbit[7]uril-paraquat inclusion complex.
Publication date: 2020
Journal: Microchimica Acta
Volume: 187
Issue: (10)
Article Number: 578.
DOI: 10.1007/s00604-020-04491-5

Abstract: Molecularly imprinted stir-bar coatings were created based on a hydroxylcucurbit[7]uril-paraquat inclusion complex. The inclusion complex that contained paraquat (PQ) as a template and monohydroxylcucurbit[7]uril ((OH)Q[7]) as a monomer was preassembled mainly through cavity inclusion interaction of (OH)Q[7] to form a one-dimensional self-assembly structure. The inclusion complex was anchored chemically on the surface of a glass stir bar with hydroxy-terminated poly(dimethylsiloxane) by the sol-gel technique to obtain a molecularly imprinted polymer-coated stir bar (MIP-SB). The molecularly imprinted coating showed specific adsorption for cationic PQ in aqueous media. Other quaternary amine compounds with a similar structure that coexisted in the solution, such as ethyl-viologen, diquat, and difenzoquat, were almost not extracted by the prepared MIP-SB. The sorptive capacity of the MIP-SB for PQ was nearly four times that of the non-imprinted stir bar (NIP-SB). The recognition mechanism indicated that the selectivity and extraction capacity resulted mainly from the imprinted cavity in the polymer that was formed by a one-dimensional assembly structure consisting of the (OH)Q[7]-PQ inclusion complex. The imprinted cavity was complementary to the PQ in shape, size, and functionality. A method to determine PQ in environmental water and vegetable samples was developed by combining MIP-SB sorptive extraction with HPLC-UV. The linear range was from 100 to 10,000 ng L-1 with a 8.2 ng L-1 detection limit for water samples and 0.02-0.85 mg kg-1 with a 0.005 mg kg-1 detection limit for vegetable samples. The limit of detection for both samples was lower than the EU-established maximum residual levels and that of other previously reported methods. The average recoveries were 70.0-96.1% with a relative standard deviation ≤ 7.6%, which showed the successful application in real sample analysis
Template and target information: paraquat, PQ
Author keywords: Cucurbit[7]uril, Imprinted polymer coating, One-dimensional self-assembly, vegetable samples


  I love MIPs mug  multi MIPs logo mug  British periodic table patriotic tote bag






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner