Abstract: In order to remove the limitations of natural antibodies or enzymes, a nano-magnetic biomimetic platform based on a surface-enhanced Raman scattering (SERS) sensor has been developed for highly sensitive capture and detection of 2,4-dichlorophenoxyacetic acid (2,4-D) in food and water samples. Magnetic-based molecular imprinted polymer nanoparticles (Mag@MIP NPs) were constructed to capture the target 2,4-D molecule via biomimetic recognition, and gold nanoparticles (Au NPs) served as SERS-based probes, which are bound to the Mag@MIP NPs by electrostatic adsorption. The as-prepared SERS-MIP sensor for sensing of 2,4-D achieved a good linear relationship with a low detection limit (LOD) of 0.00147 ng/mL within 2 h and exhibited high sensitivity. The sensor was successfully applied to detect 2,4-D in milk and tap water and achieved good recoveries ranging from 93.5 to 102.2%. Moreover, the designed sensor system exhibited satisfactory results (p > 0.05) compared to HPLC by validation analysis. Hence, the findings demonstrated that the proposed method has significant potential for practical application in food safety and environmental protection
Template and target information: 2,4-dichlorophenoxyacetic acid, 2,4-D
Author keywords: Surface-enhanced Raman scattering, molecular imprinting, 2,4-dichlorophenoxyacetic acid, food safety, magnetic nanoparticles