Abstract: The authors describe an electrochemical method for the determination of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). It is based on the use of a molecularly imprinted polymer (MIP) and of dsDNA as a bio-specific substance. The modified electrode was prepared by electropolymerization of ortho-phenylenediamine (oPD) in the presence of DNA and of 2,4-D (the template). The imprinted MIP was placed on a pencil graphite electrode (PGE) modified with chitosan and multiwalled carbon nanotubes (MWCNTs). The template was removed with 0.4-áM NaOH. The interaction of DNA with 2,4-D leads to its adsorption on the electrode, and this increases the sensitivity and selectivity of the method. After rebinding 2,4-D, the decrease in the peak current of oxidation of iron(II) acting as an electrochemical redox probe was measured by differential pulse voltammetry (DPV). The current, typically measured at around 0.5 V, increases linearly in the 0.01 to 10 pM 2,4-D concentration range, and the detection limit is 4.0 fM. The method is highly selective for 2,4-D. The modified electrode was applied to quantify 2,4-D in spiked environmental water and soil samples and gave absolute recoveries varying from 91.5 to 109.0%
Template and target information: 2,4-dichlorophenoxyacetic acid, 2,4-D
Author keywords: Poly(ortho-phenylenediamine), electropolymerization, Multiwalled carbon nanotubes, chitosan, herbicide, 2,4-D, Pencil graphite electrode