Abstract: To improve the efficacy of organic pollutant removal using sulfate radicals, we designed MIP@C-Fe-Nx, a molecularly imprinted material capable of targeting the degradation of tetrabromobisphenol A (TBBPA), which can be used as both adsorbent and catalyst to recognize and degrade Tetrabromobisphenol A (TBBPA) accurately, and the final removal rate of TBBPA can reach 104.6 mg g-1. Based on the synergistic effects of MIP@C-Fe-Nx on the excellent organic pollutant recognition and catalytic performance, low concentrations of TBBPA can be pre-targeted, concentrated, and fixed on the surface of MIP, and degraded simultaneously in-situ by OH and SO4•- which are produced by activating PS with C-Fe-Nx. Recognition experiments demonstrated that MIPs had perfect performance in recognizing and adsorbing TBBPA and debromination intermediates. The DFT calculations and HPLC-MS analysis indicated that MIP@C-Fe-Nx had a targeted recognition and accumulation for TBBPA and debromination intermediates, for example, dibromobisphenol A, monobromobisphenol A, and bisphenol A, thus avoid the formation of toxic intermediates causing secondary contamination
Template and target information: tetrabromobisphenol A, TBBA, dibromobisphenol A, monobromobisphenol A, bisphenol A
Author keywords: N-doped carbon-encapsulated Fesurface molecular imprinting, advanced oxidation technology, synergetic effect, Tetrabromobisphenol A