Abstract: A novel electrochemical biosensor based on a molecularly imprinted polymer (MIP) was developed for the impedimetric determination of Tau protein, a biomarker of Alzheimer's disease (AD). Indeed, a recent correlation between AD symptoms and the presence of Tau proteins in their aggregated form made hyperphosphorylated Tau protein (Tangles) a promising biomarker for Alzheimer's diagnosis. The MIP was directly assembled on a screen-printed carbon electrode (C-SPE) and prepared by electropolymerization of 3-aminophenol (AMP) in the presence of the protein template (p-Tau-441) using cyclic voltammetry. The p-Tau-441 protein bound to the polymeric backbone was digested by the action of the proteolytic activity of proteinase K in urea and then washed away to create vacant sites. The performances of the corresponding imprinted and non-imprinted electrodes were evaluated by electrochemical impedance spectroscopy. The detection limit of the MIP-based sensors was 0.02 pM in PBS buffer pH 5.6. Good selectivity and good results in serum samples were obtained with the developed platform. The biosensor described in this work is a potential tool for screening Tau protein on-site and an attractive complement to clinically established methodologies methods as it is easy to fabricate, has a short response time and is inexpensive
Template and target information: protein, Tau protein, p-Tau441
Author keywords: Electrochemical biosensor, MIPs, Tau protein, serum, Alzheimer disease