Abstract: Blood purification by adsorption of excessive biomolecules is vital for maintaining human health. Here, inspired by kidney self-purification, which removes a number of biomolecules with different sizes simultaneously, hierarchical molecular-imprinted inverse opal particles integrated with a herringbone microfluidic chip for efficient biomolecules cleaning are presented. The particle possesses combinative porous structure with both surface and interior imprints for the specific recognition of small molecules and biomacromolecules. Additionally, the presence of the herringbone mixer largely improve the adsorption efficiency due to enhanced mixing. Moreover, the inverse opal framework of the particles give rise to optical sensing ability for self-reporting of the adsorption states. These features, together with its reusability, biosafety, and biocompatibility, make the platform highly promising for clinical blood purification and artificial kidney construction
Author keywords: bio-inspired systems, blood purification, kidney-on-a-chip, Microfluidics, molecular imprinting