MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   
Custom Search
Reference type: Journal
Authors: Khan S, Wong A, Zanoni MVB, Sotomayor MDPT
Article Title: Electrochemical sensors based on biomimetic magnetic molecularly imprinted polymer for selective quantification of methyl green in environmental samples.
Publication date: 2019
Journal: Materials Science and Engineering: C
Volume: 103
Article Number: 109825.
DOI: 10.1016/j.msec.2019.109825
Alternative URL: https://www.sciencedirect.com/science/article/pii/S0928493119304564

Abstract: A new biomimetic sensor was prepared on carbon paste with magnetic molecularly imprinted polymer (mag-MIP) for sensitive and selective detection of methyl green dye. The mag-MIP was synthesized using a functional monomer that was selected before by computational simulation. A mag-NIP (magnetic non-imprinted polymer) control material was also prepared for comparative purposes. Modeling adsorption studied revealed that the dye-polymer interface followed pseudo-first order kinetics and that maximum adsorption (Qm) of the dye on mag-MIP was 3.13 mg g-1, while the value for mag-NIP was 1.58 mg g-1. The selective material was used as a sensing spot in fabrication of an electrochemical sensor based on modified carbon paste. For electrochemical analysis, the best achievement of the sensor was acquire by tack together a paste with 6.7% (w/w) of mag-MIP and using square-wave adsorptive anodic stripping voltammetry (SWAdASV) in 0.1 mol L-1 phosphate buffer (pH 7.0), with an applied potential (Eappl) of 0.3 V vs. Ag|AgClsat during an adsorption time (Tads) of 120 s. The results were obtained under optimized conditions in which sensor provided a linear concentration range of methyl green from 9.9 × 10-8 to 1.8 × 10-6 mol L-1, with a limit of detection (LOD) of 1.0 × 10-8 mol L-1 and a satisfactory relative standard deviation (RSD) of 4.3% (n = 15). The proposed sensor was applying using two spiked river water samples, obtaining recoveries ranging from 93% to 103%. The proposed method exhibits excellent precision also high reliability and proved to be an alternative method for the quantification of methyl green in real samples
Template and target information: methyl green
Author keywords: Magnetic-MIP, environmental analysis, Electrochemical sensor, Methyl green dye


  Template of Doom spoof movie poster bag  Mug featuring the name Maria spelled out in the single letter amino acid code  Chemists are fun customisable shirt






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner