Abstract: Trial-and-error method is widely used to seek an efficient adsorbent, although it is time- and money-consuming. Rationally design of functional materials via theoretical calculation is an emerging and appealing strategy in material science. However, exploiting of theoretical calculation for assistance of adsorbent design is rarely to be attempted despite it is usually utilized to explore the adsorption mechanism. In this work, density functional theory (DFT) calculation is exploited to design an adsorbent with high adsorption capacity and selectivity. The well-known palladium ion-imprinted polymer (IIP) was used as a model adsorbent. Then, three types of given adsorption configurations (a-Pd-IIP, b-Pd-IIP and c-Pd-IIP) were optimized. Further, their adsorption energies were calculated by DFT, which were -13.978 eV for b-Pd-IIP, -8.764 eV for a-Pd-IIP and -3.587 eV for c-Pd-IIP, respectively. The correlation coefficient (R2) between the theoretical adsorption energy and the experimental adsorption capacity reached to as high as 0.985. In addition, the dynamics and selectivity experimental results further consolidated the tendency of the calculation result. All these results demonstrate that the adsorption energy derived from DFT calculations is an important factor in guiding the design of IIPs
Template and target information: palladium ion, Pd(II)
Author keywords: Density functional theory, ion imprinting, adsorption capacity, Site energy, palladium