MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   
Custom Search
Reference type: Journal
Authors: Ambaw YA, Dahl SR, Chen Y, Greibrokk T, Lundanes E, Lazraq I, Shinde S, Selvalatchmanan J, Wenk MR, Sellergren B, Torta F
Article Title: Tailored Polymer-Based Selective Extraction of Lipid Mediators from Biological Samples.
Publication date: 2021
Journal: Metabolites
Volume: 11
Issue: (8)
Article Number: 539.
DOI: 10.3390/metabo11080539
Alternative URL: https://www.mdpi.com/2218-1989/11/8/539

Abstract: Lipid mediators, small molecules involved in regulating inflammation and its resolution, are a class of lipids of wide interest as their levels in blood and tissues may be used to monitor health and disease states or the effect of new treatments. These molecules are present at low levels in biological samples, and an enrichment step is often needed for their detection. We describe a rapid and selective method that uses new low-cost molecularly imprinted (MIP) and non-imprinted (NIP) polymeric sorbents for the extraction of lipid mediators from plasma and tissue samples. The extraction process was carried out in solid-phase extraction (SPE) cartridges, manually packed with the sorbents. After extraction, lipid mediators were quantified by liquid chromatography-tandem mass spectrometry (LC-MSMS). Various parameters affecting the extraction efficiency were evaluated to achieve optimal recovery and to reduce non-specific interactions. Preliminary tests showed that MIPs, designed using the prostaglandin biosynthetic precursor arachidonic acid, could effectively enrich prostaglandins and structurally related molecules. However, for other lipid mediators, MIP and NIP displayed comparable recoveries. Under optimized conditions, the recoveries of synthetic standards ranged from 62% to 100%. This new extraction method was applied to the determination of the lipid mediators concentration in human plasma and mouse tissues and compared to other methods based on commercially available cartridges. In general, the methods showed comparable performances. In terms of structural specificity, our newly synthesized materials accomplished better retention of prostaglandins (PGs), hydroxydocosahexaenoic acid (HDoHE), HEPE, hydroxyeicosatetraenoic acids (HETE), hydroxyeicosatrienoic acid (HETrE), and polyunsaturated fatty acid (PUFA) compounds, while the commercially available Strata-X showed a higher recovery for dihydroxyeicosatetraenoic acid (diHETrEs). In summary, our results suggest that this new material can be successfully implemented for the extraction of lipid mediators from biological samples
Template and target information: arachidonic acid, prostaglandins, PGs, hydroxydocosahexaenoic acid, HDoHE, HEPE, hydroxyeicosatetraenoic acids, HETE, hydroxyeicosatrienoic acid, HETrE, polyunsaturated fatty acids, PUFAs
Author keywords: lipid mediators, molecularly imprinted polymer (MIP), non-imprinted polymer (NIP), strata-X, Solid-Phase Extraction (SPE)


  SMI logo lapel pin  His Periodic table keyring  Lab Chick script shirt






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner