Abstract: A fluorescent assay for the selective analysis of tartrazine was developed. Tartrazine is a health-threatening food additive commonly used as fake saffron. An optical nanosensor was fabricated based on molecular imprinting technique in which carbon dots (CDs) as fluorophores and tartrazine as a template molecule were embedded in molecularly imprinted polymer (MIP) matrix. The synthesized CDs embedded in MIP (CDs-MIP) was characterized by various methods. The fluorescence intensity of (CDs-MIP) was selectively quenched in the presence of tartrazine in comparison with other similar food color additives. The correlation between the quenching of CD-MIP and the concentration of tartrazine was used as an optical sensing for rapid detection of tartrazine in the range of 3.3-20.0 nM (1.8-10.7 μg L-1) with detection limit of 1.3 nM (0.70 μg L-1). Eventually, the designed nanosensor was successfully applied for tartrazine detection in foodstuffs such as fake saffron, saffron tea and saffron ice cream samples
Template and target information: tartrazine
Author keywords: Tartrazine, Food color, Fluorescence nanosensor, Carbon dots, molecularly imprinted polymer