Abstract: Semicarbazide (SEM) is a protein-bound nitrofurazone metabolite that is detrimental to human health. Therefore, to ensure food safety, it is necessary to detect SEM in food samples. To this end, we developed a novel electrochemical sensor to detect SEM by using a molecularly imprinted polymer (MIP) as the recognition element. Computer-aided molecular modelling was performed to guide the synthesis of the MIP, and subsequently, MIP/carboxylated single-walled carbon-nanotubes/chitosan (MIP/SWNTs-COOH/CS) was prepared as the sensing platform to develop the electrochemical sensor. The linear range of the sensor was 0.04-7.6 ng mL-1, with a detection limit of 0.025 ng mL-1. The sensor was successfully applied to detect SEM in four different real samples, with recoveries ranging from 83.16% to 93.40%. The results indicated that the fabricated electrochemical sensor can be widely applied to detect SEM in the environment and in agri-food products
Template and target information: semicarbazide, SEM
Author keywords: Electrochemical sensor, molecularly imprinted polymer, Carboxylated single-walled carbon nanotubes, Computational simulation, semicarbazide