Abstract: In this work, a comparative study of the effect of various solvents on the synthesis of magnetic molecularly imprinted polymers (MMIPs) based on the use of high-power ultrasound probe is reported for the first time. Dimethylsulfoxide (DMSO), dimethylformamide (DMF), ethanol, acetonitrile and acetone were studied as solvents for the synthesis of MMIPs. Several crucial experimental conditions such as the time of synthesis and the applied amplitude were investigated. DMSO, DMF and ethanol were successfully used for ultrasound-assisted synthesis of MMIPs. However, for the polymerization performed using acetonitrile and acetone, no significant conversion to product was observed. Under optimal conditions for each solvent tested, the synthesized MMIPs were characterized using several techniques such as Scanning/Transmission Electron Microscopy (SEM and STEM modes), X-Ray Diffraction, Fourier Transform Infra-Red Spectroscopy, Thermal Gravimetric Analysis and Vibrating Sample Magnetometer system. The study of adsorption time of MMIPs showed that fast adsorption occurred due to the presence of specific imprinted sites on the surface. Moreover, isotherm study showed that the experimental equilibrium data fitted well with Freundlich model. The results of selectivity study indicated that MMIPs could selectively recognize the target molecule. Due to its high adsorption properties and easiness of preparation, MMIP-DMSO was used successfully as adsorbent material in solid-phase extraction coupled to a colorimetric method for sulfamethoxazole (SMX). After optimizing analytical conditions, a calibration plot was performed in the concentration range from 0.2 to 5 μg mL-1 with limits of detection and quantitation of 0.06 and 0.2 μg mL-1, respectively. The developed procedure was applied successfully for SMX determination in spiked tap and mineral waters showing satisfactory recoveries. Besides, reusability study demonstrated that MMIP could be reused at least 8 times keeping good binding capacity
Template and target information: sulfamethoxazole, SMX
Author keywords: High-power ultrasound probe, organic solvents, Nanostructured magnetic molecularly imprinted polymer, Solid-phase extraction, Spectrophotometry, Sulfonamide in tap and mineral water