Abstract: Mesoporous silica Santa Barbara-15 was functionalized by methacryloxypropyl trimethoxysilane. Taking this as the carrier material, a new mesoporous silica surface imprinted polymer was synthesized by using the C=C bond, functional monomer α-methacrylic acid, and crosslinker ethylene glycol dimethacrylate, which was used to extract aflatoxin from grain efficiently. It is different from the preparation of surface imprinted polymers which is physically wrapping carrier materials with polymer layers. The chemical grafting method makes the coating of the polymer layer more controllable. A new method for selective separation, enrichment, and determination of trace aflatoxin in grain was established by using the polymers as the filter of the solid-phase extraction column and high-performance liquid chromatography. The linear range of the method was 0.5-100 μg/kg, R2 = 0.9990-0.9993. The recovery of aflatoxin G2, G1, B2, and B1 was 98.9-119.7% and the relative standard deviation was 3.07-5.76%. By comparing the self-made column with the immunoaffinity column, it was found that the self-made column had better extraction performance for aflatoxins than the immunoaffinity column. It can be used for the analysis and detection of aflatoxins in cereal
Template and target information: aflatoxins, aflatoxin G2, aflatoxin G1, aflatoxin B2, aflatoxin B1
Author keywords: Aflatoxins, Chemical grafting, functionalized SBA-15, surface molecularly imprinted polymers