Abstract: Poly-γ-glutamic acid (γ-PGA) is one of the few bacterial polymers in nature with high added value of biodegradability. Especially, the traditional method of extracting γ-PGA is organic solvent extraction, etc., which has the disadvantages of low extraction rate and serious environmental pollution. With the expansion of γ-PGA industrial fermentation, an efficient and environmentally friendly method is required to be adopted. In this contribution, we report a novel method of separation of γ-PGA from fermentation broth based on molecular imprinting technology. The molecular imprinted polymer (MIP) was synthesized from chitosan (CS) and glutaraldehyde in the presence of γ-PGA. A nonimprinted polymer (NIP) was also synthesized by the same procedure in the absence of γ-PGA. The chemical structures and morphological structures of both MIP and NIP were examined by FTIR spectroscopy and scanning electron microscopy. The adsorption isotherms showed that the maximum adsorption capacity of MIP was 137.85 mg/g. The maximum adsorption capacity in the adsorption of NIP was 68.92 mg/g, which indicates that MIP shows specific selectivity for γ-PGA. A high saturated absorption capacity (Qmax=140.90 mg/g) was calculated from Freundlich isotherm equation. The imprinting factor of MIP was 4.76, indicating that MIP possess good recognition ability and selectivity for γ-PGA. The adsorption capacity decreased slightly (17.0%), which suggests the satisfactory reusability of γ-PGA after 5 cycles of reuse. Our study indicates that molecularly imprinted polymers present development prospects in the effective and selective separation of γ-PGA from fermentation broth compared with organic solvent precipitation
Template and target information: poly-γ-glutamic acid, γ-PGA
Author keywords: molecular imprinting technology, Chitosan imprinted biopolymer, γ-PGA, Specific extraction