MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   
Custom Search
Reference type: Journal
Authors: Niu JF, Liu H, Wang XD, Wu DZ
Article Title: Molecularly Imprinted Phase-Change Microcapsule System for Bifunctional Applications in Waste Heat Recovery and Targeted Pollutant Removal.
Publication date: 2019
Journal: ACS Applied Materials & Interfaces
Volume: 11
Issue: (41)
Page numbers: 37644-37664.
DOI: 10.1021/acsami.9b11856

Abstract: An innovative design of a molecularly imprinted phase-change microcapsule (MIM) system for bifunctional applications in waste heat recovery and targeted pollutant removal was reported in this work. This molecularly imprinted system was successfully constructed by encapsulating n-eicosane with a SiO2 base shell through emulsion-templated interfacial polycondensation and then coating a molecularly imprinted polymeric layer with bisphenol A (BPA) as a template molecule through surface free-radical polymerization. The morphology, microstructure, and chemical structure of the resultant molecularly imprinted phase-change microcapsules (MIMs) were characterized, and their phase-change behavior, thermal energy-storage performance, and selective adsorption capability were investigated intensively. The MIMs developed in this study achieved an outstanding latent heat-storage capability with a high capacity more than 165 J/g and also showed an excellent phase-change reliability with a very small fluctuation in phase-change temperatures and enthalpies after 500 thermal cycles. Moreover, the MIMs also presented a high thermal stability over 200 ℃ and good shape stability up to 120 ℃ . Most of all, an effective specific recognition capability and high recognition efficiency were achieved for the MIMs due to the formation of BPA-molecular imprinting sites on their surface. As a result, the MIMs exhibited good adsorption selectivity toward the BPA molecules and satisfactory reusability for targeted removal of BPA with a removal efficiency of 61.7% after 10 cycles of the rebinding-elution procedure. In view of a smart combination of thermal energy-storage and selective adsorption functions, the MIMs developed in this study demonstrate a great potential in applications for waste heat recovery and targeted pollutant removal of industrial and domestic wastewaters
Template and target information: bisphenol A, BPA
Author keywords: molecular imprinting, phase-change materials, microcapsules, coreGêÆshell structure, thermal energy storage, targeted pollutant removal


  I love MIPs hat  multi MIPs logo mug    Mug featuring the template Bisphenol A






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner