MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   
Custom Search
Reference type: Journal
Authors: Zhao JL, He H, Guo ZC, Liu Z
Article Title: Molecularly Imprinted and Cladded Nanoparticles Provide Better Phosphorylation Recognition.
Publication date: 2021
Journal: Analytical Chemistry
Volume: 93
Issue: (48)
Page numbers: 16194-16202.
DOI: 10.1021/acs.analchem.1c04070

Abstract: Phosphorylation is one of the most frequently occurring post-translation modifications in mammals. Because abnormal protein phosphorylation is related to many diseases, phosphorylation analysis is essential for a sound understanding of protein phosphorylation and its relationship with diseases. Among several types of reagents for phosphorylation recognition, molecularly imprinted polymers (MIPs), as synthetic mimics of antibodies, have exhibited unique strengths that can overcome the drawbacks of biological reagents. However, the performance of current MIPs has remained unideal. Meanwhile, while the currently existing imprinting methods have permitted the production of several material formats, such as crushed particles and mesoporous nanoparticles, a general method allowing for the preparation of monodispersed molecularly imprinted nanoparticles has not been developed yet. Herein, we report a new approach called reverse microemulsion template docking surface imprinting and cladding (RMTD-SIC) for facile preparation of monodispersed imprinted nanoparticles for better phosphorylation recognition. Through rational design and controllable engineering, monodisperse imprinted and cladded nanoparticles specific to general phosphorylation and tyrosine phosphorylation were synthesized, which yield the highest imprinting factors as compared with published studies. The prepared nanomaterials exhibited excellent specificity and affinity, allowing for specific enrichment and improved mass spectrometric identification of target phosphorylated peptides from complex samples containing 100-fold more abundant interfering peptides. Therefore, the RMTD-SIC approach holds great potential for phosphorylation analysis and phosphorylation recognition-based applications
Template and target information: peptides, phosphorylated peptide, phosphorylated tyrosine


  SMI logo mug  Periodic table Genius shirt  Lab Chick script shirt






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner