Abstract: A molecularly imprinted polymer was developed and used for solid-phase extraction (MISPE) of the antihelmintic fenbendazole in beef liver samples. Detection of the analyte was accomplished using square wave voltammetry (SWV) at a cylindrical carbon fibre microelectrode (CFME). A mixture of MeOH/HAc (9:1) was employed both as eluent in the MISPE system and as working medium for electrochemical detection of fenbendazole. The limit of detection was 1.9 x 10-7 mol L-1 (57 μg L-1), which was appropriate for the determination of fenbendazole at the maximum residue level permitted by the European Commission (500 μg kg-1 in liver). Given that the SW voltammetric analysis could not be directly performed in the sample extract as a consequence of interference from some sample components, a sample clean-up with a MIP for selectively retaining fenbendazole was performed. The MIP was synthesized using a 1:8:22 template/methacrylic acid/ethylene glycol dimethacrylate ratio. A BrittonűRobinson Buffer of pH 9.0 was selected for retaining fenbendazole in the MIP cartridges, and an eluent volume of 5.0 mL at a flow rate of 2.0 mL min-1 was chosen in the elution step. Cross-reactivity with the MIP was observed for other benzimidazoles. The synthesized MIP exhibited a good selectivity for benzimidazoles with respect to other veterinary drugs. The applicability of the MISPE-SWV method was tested with beef liver samples, spiked with fenbendazole at 5,000 and 500 μg kg-1. Results obtained for ten different liver samples yielded mean recoveries of (95 ± 12)% and (96 ± 11)% for the upper and lower concentration level, respectively
Template and target information: fenbendazole
Author keywords: Benzimidazoles, Fenbendazole, molecularly imprinted polymer, Square wave voltammetry, Beef liver