Abstract: The method for preparation of molecularly imprinted monolithic stationary phase has been improved to achieve liquid chromatographic separation of enantiomers and diastereomers. By adopting low polar porogenic solvents of toluene and dodecanol and optimal polymerization conditions, the molecularly imprinted monolithic stationary phases with good flow-through properties and high resolution were prepared. Enantiomers of amino acid derivatives and diastereomers of cinchona alkaloids were completely resolved using the monolithic stationary phases. The influence of porogenic composition, monomer- template ratio and polymerization conditions on the chromatographic performance was investigated. Some chromatographic conditions such as the composition of the mobile phase and the temperature were characterized. Scanning electron microscopy showed that the molecularly imprinted monolithic stationary phase has a large through-pore structure to allow the mobile phase to flow through the column at very low backpressure. Accelerated separations of enantiomers and diastereomers were therefore achieved at elevated flow rates. Finally, the chiral recognition performance of the prepared stationary phase in aqueous media was investigated. Hydrophobic interaction, and ionic and/or hydrogen bonding interactions were proposed to be responsible for the recognition mechanism. (C) 2002 Elsevier Science B.V. All rights reserved