Abstract: In this study, we extended the molecular imprinting capability of TiO2 gel to the monosaccharide family. Composite nanofilms were prepared from d-glucose and titanium n-butoxide, Ti(O-nBu)4, on a QCM electrode by the surface sol-gel process. After the d-glucose template was removed, the binding behavior of the template and other monosaccharides (d-mannose, d-galactose and d-fructose) was examined by QCM measurement The d-glucose imprinted TiO2 gel film provided sensitively mass increases for monosaccharides. The largest binding was achieved with d-glucose, showing a maximal binding ratio of 2.3 (λ = Mimp/Mnon-imp, mol/mol) between the imprinted and non-imprinted films. The other six-membered monosaccharide guests gave 44-68% binding efficiencies of that of d-glucose. It is concluded that the imprinted TiO2 gel film could efficiently discriminate the structure of monosaccharide isomers
Author keywords: molecular imprinting, monosaccharides, TiO2 ultrathin film, surface sol-gel process