Abstract: In the last few years solid-phase extraction (SPE) has become the most often used preconcentration technique for trace analysis. In SPE with most commercial sorbents, many components of complex samples are co-extracted, so additional clean-up is usually needed before the chromatographic analysis is made. However, specific SPE materials avoid this problem by providing a selective extraction. So far, the most selective phases used for SPE are based on immunoaffinity (IAC). The high selectivity and low stability of immunosorbents and the fact that is difficult and expensive to obtain biological antibodies are reason that IACs are used less widely for many different compounds [56, 57]. An alternative technology, using molecularly imprinted polymers (MIPs), is currently being extensively evaluated. Table 1 compares characteristics of molecularly imprinted polymer, immunoaffinity and conventional SPE columns.
As depicted in Figure 1, MIPs are made in situ by copolymerization of functional monomeres and crosslinking monomeres in the presence of the print molecule, called the template that after extraction leaves its molecular impression on the surface as the polymer forms around it [39, 30]. The examples of most commonly used monomers are presented in Figure 2 and Figure 3, respectively.
Table 2 provides an overview of examples of applications of SPE that incorporate molecularly imprinted polymer technology for extracting drugs and pollutants from different matrices.
Besides SPE, MIPs have been applied as selective sorbents in several analytical techniques, including liquid chromatography [12-18], capillary electrophoresis, electrochromatography [19-23], as immunoassay and sensors [24-28].
Template and target information: Review - MIPs in solid phase extraction