Abstract: Based on the combination of colloidal-crystal templating and a molecular imprinting technique, a sensor platform for efficient detection of atrazine in aqueous solution has been developed. The sensor is characterized by a 3D-ordered interconnected macroporous structure in which numerous nanocavities derived from atrazine imprinting are distributed in the thin wall of the formed inverse polymer opal. Owing to the special hierarchical porous structure, the molecularly imprinted polymer opals (or molecularly imprinted photonic polymer; MIPP) allow rapid and ultrasensitive detection of the target analyte. The interconnected macropores are favorable for the rapid transport of atrazine in polymer films, whereas the inherent high affinity of nanocavites distributed in thin polymer walls allows MIPP to recognize atrazine with high specificity. More importantly, the atrazine recognition events of the created nanocavities can be directly transferred (label-free) into a readable optical signal through a change in Bragg diffraction of the ordered macropores array of MIPP and thereby induce color changes that can be detected by the naked eye. With this novel sensory system, direct, ultrasensitive (as low as 10-8 ng mL-1), rapid (less than 30 s) and selective detection of atrazine with a broad concentration range varying from 10-16 M to 10-6 M in aqueous media is achieved without the use of label techniques and expensive instruments
Template and target information: atrazine
Author keywords: atrazine, chemosensors, colorimetric detection, molecular imprinting, polymers