Abstract: Imprinted materials: Monosilylated derivatives of melamine and cyanuric acid are used in the preparation of hybrid silica. The assembly of the melamine and cyanuric acid moieties through molecular recognition properties is the key factor in building a bridged silsesquioxane and an imprinted hybrid silica (see picture).Two monotrialkoxysilylated compounds that consist of complementary fragments of melamine (M) and cyanuric acid (CA) have been synthesised. The molecular recognition properties of the M and CA fragments through complementary hydrogen bonds (DAD and ADA; D=donor, A=acceptor) are the key factor used to direct the formation of hybrid silica materials by using a sol-gel process. These materials were synthesised following two methods: First, an organo-bridged silsesquioxane was obtained by the hydrolysis of the two complementary monotrialkoxysilylated melamine and cyanuric acid derivatives, with fluoride ions as a catalyst. The hydrogen-bonding interactions between the two organic fragments are responsible for the formation of the bridging unit. The transcription of the assembly into the hybrid material was characterised and evidenced by solid-state NMR (29Si, 13C) and FTIR spectroscopic experiments. Second, the molecular recognition was exploited to synthesise an imprinted hybrid silica. This material was prepared by co-condensation of tetraethyl orthosilicate (TEOS) with the monosilylated cyanuric acid derivative (CA) templated by nonsilylated melamine. The melamine template was completely removed by treating the solid material with hydrochloric acid. The reintroduction of the template was performed by treating the resulting material with an aqueous suspension of melamine. These steps were monitored and analysed by several techniques, such as solid-state NMR (29Si, 13C) and FTIR spectroscopic analysis and nitrogen adsorption-desorption isotherms
Template and target information:
Author keywords: complementary assembly, hybrid materials, imprinting, molecular recognition, sol-gel processes