Abstract: A novel molecularly imprinted polymer-coated polypropylene hollow fiber tube (MIP-HFT) was photoinitiated for the copolymerization of diethylstilbestrol (DES) as a template molecule, α-methacrylic acid as a functional monomer, and ethylene glycol dimethacrylate as a crosslinking agent. The characteristics and applications of the MIP-HFT were investigated. In order to compare its characteristics with those of a non-imprinted polymer-immersed hollow fiber tube, the selectivity of the MIP-HFT was investigated using dienestrol and hexestrol as the structural analogues of a DES template, and phenol and methylbenzene were taken as reference compounds. The MIP-HFT was employed in the HPLC analysis of spiked milk samples. The detection limits of the method were found to be in the range 2.5-3.3 μg L-1 for DES, dienestrol and hexestrol and the RSD% were in the range 6.4-8.9. The limits of quantitation were found to be in the range 8.7-9.4 μg L-1 in milk for DES, dienestrol and hexestrol, and their average recoveries were 83.7-90.6% in the spiked milk samples. The experimental results revealed that the MIP-HFT provides a good carrier for the selective adsorption of DES and its chemical structure analogs, and can be used for the preconcentration of these compounds in complicated samples
Template and target information: diethylstilbestrol, DES
Author keywords: molecularly imprinted polymer, Hollow fiber tube, diethylstilbestrol, synthesis