Abstract: Abstract: Convection of molecularly imprinted polymers monolith in LC mode was discussed in this paper. On the MIPs monolith reported here, a flat van Deemter plot of height equivalent to a theoretical plate (HETP) versus superficial velocity was observed. This typical behavior, similar to perfusion packings, suggests that the unique pore structure of the MIPs monolith allowed convection-enhanced mass transfer. Column parameters, e.g., external porosities, internal porosity, column permeability and equivalent sphere dimension, were obtained. Intraparticle Peclet number (λ) was used to characterize the convection in the monolith. In addition, a ratio of the numbers of transfer units, T, for diffusion in the micropores and through-pores has been introduced to quantify the relative importance of the contribution from convection and diffusion to mass transfer. The results show that the flow in a MIP monolith is extremely sensitive to pore size distribution and can be tuned by polymerization parameters
Template and target information: naproxen
Author keywords: Molecularly imprinted polymers, monolith, Convection, mass transfer, naproxen