Abstract: In this paper, a molecularly imprinted polymers (MIP) for sarafloxacin was prepared by the use of itaconic acid as the functional monomer and ethylene glycol dimethacrylate as the crosslinking monomer. To improve selectivity, cobalt(II) ions was used to form metal-template complex, which provided the specific binding sites similar to metal-chelate antibody. The influences of different anions and cations on the recognition performance of the MIP were investigated in protic solvent. Due to the specific structure of the complex of cobalt(II)-sarafloxacin, it increased the specific selectivity of the polymer to sarafloxacin. In addition, we founded that anions also promoted the molecular recognition, leading to a further increased the specific selectivity of the polymer. Scatchard analysis show that two classes of binding sites existed in the metal complex imprinted polymers, with their maximum apparent binding capacity was estimated to be 51.3 μmol g-1 and 32.6 μmol g-1, respectively. Over the traditional organic phase synthesis of MIP, the present protocol was achieved in aqueous media, keeping the consistent of the preparation process and recognition process of the MIP. The results on substrate selectivity of imprinted polymer revealed that the prepared MIP had better binding affinity for template than the other tested compounds
Template and target information: sarafloxacin
Author keywords: complex, molecularly imprinted polymer, sarafloxacin, Static adsorption