Abstract: Molecularly imprinted polymer (MIP) monoliths with (S)-ornidazole ((S)-ONZ) as the template molecule have been designed and prepared by the simple thermal polymerization of methacrylic acid, 4-vinylpyridine, and ethylene dimethacrylate in the presence of a binary porogenic mixture of toluene and dodecanol. The influences of polymerization mixture composition on the chiral recognition of ONZ have been evaluated, and the imprint effect in the optimized MIP monolith has been clearly demonstrated. The new monolithic stationary phase with optimized porous property and good selectivity was used for the chiral separation of ONZ by pressurized CEC. The pressurized CEC conditions were also optimized to obtain the good chiral separation. The enantiomers were rapidly separated within 9 min on the MIP-based chiral stationary phase, whereas the chiral separation was not obtained on the nonimprinted polymer. Additionally, the proposed method has been successfully applied to the chiral separation of ONZ in tablet samples by injection of the crude sample. The cross-selectivity for similar antiparasitic drug was investigated. The results indicated that the chiral separation of secnidazole could also be obtained on the optimized MIP monolith within 14 min
Template and target information: (S)-ornidazole, (S)-ONZ, ONZ, secnidazole
Author keywords: chiral separation, Molecularly imprinted polymer monolith, Ornidazole, Pressurized CEC, Secnidazole