Abstract: An interpenetration network (IPN) ion-imprinting hydrogel (IIH) was synthesized using uranyl ions as template for adsorption and removal of uranyl ions from aqueous solutions. The IIH was obtained via cross-linking of blended chitosan/polyvinyl alcohol (PVA) using ethylene glycol diglycidyl ether (EGDE). The ability of the IIH to adsorb and remove uranyl ions from aqueous solutions was assessed using a batch adsorption technique. The maximum adsorption capacity was observed in the pH range of 5.0-6.0. The adsorption process could be well described by both the Langmuir and Freundlich isotherms and the maximum adsorption capacity calculated from Langmuir equation was 156 mg/g. Equilibrium was achieved within 2 h. The kinetic data, obtained at optimum pH 5.0 could be fitted with to a pseudo-second order equation. The selectivity coefficient of uranyl ion and other metal cations on IIH indicated an overall preference for uranyl ions which was much higher compared with the non-imprinted hydrogel. This suggests that the IIH is a promising sorbent material for the selective removal of uranyl ions from aqueous solutions
Template and target information: uranyl ion
Author keywords: Uranyl ions, adsorption isotherms, Ion-imprinted hydrogel, chitosan