Abstract: The homogeneous molecularly imprinted microspheres (MIMs) based on a biologically inspired hydrogen-bond array were prepared using allobarbital as the novel functional monomer and divinylbenzene as the cross-linker. The host-guest binding characteristics were examined by molecular simulation and infrared spectroscopy. The resultant MIMs were evaluated using high performance liquid chromatography and solid-phase extraction. The results obtained demonstrate that the good imprinting effect and the excellent selectivity of MIMs are mainly due to the interaction involving the formation of three-point hydrogen bond between host and guest. The complete baseline separation was obtained for five triazine analogues and a metabolite on the MIM HPLC column. The MIMs were further successfully used as a specific sorbent for selective extraction of simetryne from corn and soil samples by molecularly imprinted solid phase extraction. Detection limits and recoveries were 5.8 μg/kg and 0.14 μg/kg and 87.4-105% and 94.6-101% for simetryne in corn and soil sample, respectively
Template and target information: triazine herbicides, simetryne, SMT, ametryn, terbutryn
Author keywords: molecularly imprinted microspheres, Hydrogen-bond array, Homogeneous interaction, Simetryne, precipitation polymerization