Abstract: A rapid, sensitive and selective electrochemical method was proposed for the determination of 2,4-dinitrophenol (2,4-DNP) in surface water samples, using hydrophilic molecular imprinted polymers (MIPs) as the recognition element and nickel (Ni) fiber as the catalytic element. Hydrophilic MIPs were synthesized using 2,4-DNP as the template, acrylamide as the monomer, glycidilmethacrylate as the pro-hydrophilic co-monomer and acetonitrile as the solvent. Hydrophilic modification could enhance the accessibility of 2,4-DNP to the imprinted cavities and improve the selective recognition properties of traditional MIPs in water medium. Subsequently, hydrophilic MIPs/Ni fiber electrode was prepared to determine trace 2,4-DNP by cyclic voltammetry. The parameters affecting the analytical performance were investigated. Under optimized conditions, the linear range was 0.7-30 μg L-1 and the detection limit was 0.1 μg L-1. Finally, the proposed method was applied to measure 2,4-DNP in surface water samples. The spiked recoveries were changed from 91.3% to 102.6% and the RSD was not higher than 5.1%. There was no statistically significant difference between the results obtained by the proposed method and the traditional chromatographic method
Template and target information: 2,4-dinitrophenol, 2,4-DNP
Author keywords: Hydrophilic molecularly imprinted polymers, Nickel fiber, 2,4-Dinitrophenol, Electrochemical sensor, Surface water samples