Abstract: The highly selective and sensitive detection of a chemical nerve agent analog pinacolyl methylphosphonate (PMP) was demonstrated using an electrochemically molecularly imprinted polymer (MIP) polythiophene film onto a quartz crystal microbalance (QCM) transducer surface. The fabrication and optimization of the sensor film was monitored by in situ electrochemistry-QCM (EC-QCM) measurements, which determined the change in mass and simultaneous change in redox properties of the polymer film. The film deposition, template loading, and template removal were evidenced by a combination of surface characterization techniques such as the attenuated total reflection infrared spectroscopy and high-resolution X-ray photoelectron spectroscopy. The fabricated MIP film demonstrated a limit of detection and a limit of quantification of 60 and 197 μM, respectively. The linear sensing range is between 125 and 250 μM concentration of PMP. Finally, theoretical modeling (AM1 semiempirical quantum calculations) studies revealed that a stable prepolymerization complex is formed in solution with the existence of H-bonding interactions using the 2:1 monomer-to-template ratio. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012
Template and target information: pinacolyl methylphosphonate, PMP
Author keywords: electropolymerization, molecular imprinting, Nerve agent, quartz crystal microbalance