Abstract: We examine the characteristics of molecularly imprinted polymer (MIP) layers for bisphenol A (BPA) to investigate the effect of their thickness on the performance of the BPA sensor. MIP thin layers for bisphenol A were polymerized on a sputtered gold electrode by UV light irradiation for 2 to 30 min. Their thickness, as determined by a QCM analyzer, was 3.6 ± 0.3 nm after 5 min of irradiation and increased as the irradiation time increased to 30 min. AFM images of the MIP-modified surface suggested that the gold electrode was covered with a smooth MIP layer. The anodic peaks of BPA and ascorbic acid caused by gold electrode and the MIP-modified electrode were compared, and the electrode with MIP polymerized for 5min showed more selectivity to BPA than that polymerized for 2 min. The MIP thin layer thus has potential as a sensing element of a chemical sensor.
Template and target information: bisphenol A, BPA