MIPs logo MIPdatabase      MIP2020 Conference logo Use this space
Custom Search
Reference type: Journal
Authors: Abouzarzadeh A, Forouzani M, Jahanshahi M, Bahramifar N
Article Title: Synthesis and evaluation of uniformly sized nalidixic acid-imprinted nanospheres based on precipitation polymerization method for analytical and biomedical applications.
Publication date: 2012
Journal: Journal of Molecular Recognition
Volume: 25
Issue: (7)
Page numbers: 404-413.
DOI: 10.1002/jmr.2201

Abstract: For the first time in this work, uniform molecularly imprinted polymer (MIP) nanoparticles were prepared using nalidixic acid as a template. The MIP nanoparticles were successfully synthesized by precipitation polymerization applying methacrylic acid (MAA) as a functional monomer and trimethylolpropane trimethacrylate (TRIM) as a cross-linking monomer at different mole ratios. The morphology, binding, recognition, selectivity, and in vitro release behaviors of obtained particles were studied. The produced polymers were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetric. Furthermore, their morphology was analyzed accurately by scanning electron microscopy, photon correlation spectroscopy, and Brunauer-Emmett-Teller analysis. The nanospheres and microspheres with mean diameter values of 94 nm, 256 nm, and 1.2 μm were obtained using nalidixic acid-MAA-TRIM various mole ratios. Among the MIPs, the product with nalidixic acid-MAA-TRIM mole ratio of 1:12:12 established nanospheres with the lowest polydispersity index (0.003), an average pore diameter (12 nm), and the highest specific surface area (280 m2 g-1) and selectivity factor (10.4). Results from binding experiments demonstrated that the imprinted nanospheres with a 94-nm mean diameter and a binding capacity of 28 mg of nalidixic acid per gram of polymer had higher specific affinity to nalidixic acid in contrast with the other imprinted nanospheres, microspheres, and nonimprinted particles. However, the binding performance of imprinted nanospheres in human serum was estimated using high-performance liquid chromatography analysis (binding approximately 98% of nalidixic acid). In addition, release experiments proved to be successful in the controlled release of nalidixic acid during a long period. The 20% of loaded nalidixic acid was released from the imprinted nanospheres within the first 20 h, whereas the remaining 80% was released in the after 120 h. The nalidixic acid release kinetics from the MIPs was highly affected by properties of the particles. Copyright 2012 John Wiley & Sons, Ltd
Template and target information: nalidixic acid
Author keywords: molecularly imprinted polymer, nalidixic acid, precipitation polymerization, Nanosphere, molecular recognition, controlled release


  SMI logo lapel pin  Periodic table Prof shirt  Lab Chick script shirt

Molecules Special Issue call      Appeal for information






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner